Jordan University
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab-1 Tutorial: Getting Started + Fundamentals
Eng. Asma Abdel Karim

Tutorial contents:

e Part [: Compiling and Running without an IDE

e Part II: Developing Java Programs Using NetBeans
e Part III: Programming Errors Examples

e Part IV: Common Errors

e Part V: The print and printf statements

¢ Part I: Compiling and Running without an IDE (1.8 p.16&17).

1. Create your Java source file using a text editor (e.g. Windows Notepad).

P welcome.java - Notepad - 0] x|
Fle Edt Format Vew Hep
public class welcome { -

pubTlic static void main(String[] args) {
system.out.printin("welcome to Java!™");

[

Z

2. Write commands in the command prompt to compile and run your program.

B¥ Command Prompt [——MD'I"@“]

. &=
Comp1le|—> c:\hook>javac Welcome.java

Show files — 3! c:\bhook>dir Yelcome.x
Uolume in drive C has no label.
Uolume Serial Number is 2EF7-CA%3

Directory of c:\bhook

‘.19/29/2811 #3:43 PM 424 Welcome.class
18-29,2811 83:42 PM 176 Welcome.java
2 File(s> 668 bytes

8 Dircs? 760.200.327.8249 hytes free

Run—» ¢ Nhook>java Welcone
Melcome to Java!

c :N\book>_
£ I

(S =

¢ Part II: Developing Java Programs Using NetBeans.
Note: similar content is available in the textbook section 1.11

NetBeans is an Integrated Development Environment (IDE) for developing primarily with Java. It
also can be used for development with other languages, in particular: PHP, C/C++, and HTMLS.

1. Setting up the project.

To create a project using NetBeans, first start the IDE. Then, choose File > New Project as shown
in the figure:

File Edit View Mavigate Source Refactor Run Debug Profile

B Mew Project... Ctrl+5hift+M
| New File... Cirl+N

Open Project... Ctrl+Shift+0 —
Open Recent Project]
Close Project (MobileApplication)

Open File...

Open RecentFile »

Project Group]
Project Properties (MobileApplication)

Import Project]
Export Project]

Cirl45

Ctrl+Shift+5

— Cirl-+Alt+Shift+P

In the New Project wizard, expand the Java category and select Java Application as shown in the
figure below, then click Next.

x|

Steps Choose Project

1. Choose Project Categories: Projects:

O | *» Java Application
..... £ JavaFx &» Java Class Library
.....] Javaweb & Java Project with Existing Sources

_____] JavaEe %4, Java Free-Form Project

-] Samples

Description:

Creates a new Java SE application in a standard IDE project. You can
also generate a main dass in the project. Standard projects use an
IDE-generated Ant build script to build, run, and debug your project.

< Back | Mext = I Firishy | Cancel | Help |

In the Name and Location page of the wizard, do the following (an example is shown in the figure
below):

In the Project Name field, type the name of the project.

Unless you want to store your project files in another location, keep the Project Location field
as 1s. This field is filled automatically with the default location for storing NetBeans projects
which is a folder named NetBeansProjects under your Documents folder.

Leave the Use Dedicated Folder for Storing Libraries checkbox unchecked.

Keep the Create Main Class checkbox checked, then type the name of your main class next to
it. By leaving this checkbox selected, the IDE will automatically generate the skeleton of the
main class: it will define a class with the name you specified and define the main method inside
it with an empty body. For this lab, it is preferable to name the main class: MainClass.

'GNewJavaApplication - e ‘... s FRN B % & & - ﬂ‘

Steps Name and Location
1. Choose Project Project Name: Lab1
2. MName and Location
Project Location: | C:\Users'\asma'\DocumentsetBeansProjects

Project Folder: C:\Users'\asma\Documents\etBeansProjects\Lab 1

[Use Dedicated Folder for Storing Libraries

Libraries Folder: Browse...

Different users and projects can share the same compilation
libraries {see Help for details).

I Create Main Class |MainClass

Mext = Finish H Cancel ” Help

Click Finish. The project is now created and opened in the IDE. You should be able to see the
following components:

The Project window which contains a tree view of the components of the project.
The Source Editor window with a file called MainClass.java open. Note that the IDE
automatically names the .java file with the same name of the main class.

The Navigator window, which you can use to quickly navigate between elements within the
selected class.

] Labl - NetBeans IDE
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

ELF LI Tk I <)

Files ® Services H| IProists] & MenOems.java 3| iH)i= =
@ Assment S | ooy |B -8R SRAP LT @0 E &I
E-[)! Bokshop s a5
[Finl n - T
. -1yl final_project 3
Project G Javarspication :
- [)) Labi
—_— 5 -
window b e :
Bl == 1 e
[Manciesjava B -
) buidem g
[&] mandest.mf an |
-l Lab7 1 1 publiz slass MainClass |
- mid 12
- mdiavs 13 H
G-l vehdes 14 I param args the= command line arguments
15 - L
Havigator 2 B | 15 = puklic atatic void main|] 1
|Ma1be(5 x| | cempty> M|l v I0D0 code application logic here
[y Maindlass L
. - mein{Sting[]) 13
Navigator 2
> 2
window
& DMMEE =) & > "
& Houour 7 javedec [TRETERT ¥
Source
Editor

2. Adding code to the generated source file.

You can add the code to be executed in the main method by replacing the line:

//TODO code application logic here

For example try replacing it with the statement:
System.out.println(“Welcome to Java!”);

Save the change by choosing File>Save.
The file should look something like the following sample:

| A~~~ ————=— -~

Souree J ooy @ B0 QTS BRIP LD T/ 0 0 &

1=

2 T in ect pertie
3 T

4 n pen e template in e edi
5| L

[

7

g

g 1 r

10, -

11 | puklic class MainClass {

iparam args the command line arguments

public static void main (String[] args) {

System.out.println("Welcome to Javal!™);

16
17
18

3. Compiling and running the program.

m

Because of the IDE’s Compile on Save feature, you do not have to manually compile your project
in order to run it in the IDE. When you save a Java source file, the IDE automatically compiles it.
However, if you want to compile your file manually, choose Run > Compile File or press FO.

Note: The Compile on Save feature can be turned off in the Project Properties window. Right-click
your project, select Properties. In the Propeties window, choose the Compiling tab. The Compile

on Save checkbox is right at the top.

To run the program, choose Run > Run Project or press F6.
The following figure shows the output of the previous code example:

: Qutput - Lab1 (run)

u> Welcome to Java!l
BUILD SUCCESSFUL (total time: 0 seconds)

a8

s} @ Javadoc

If your code contains compilation errors, they will be marked with red glyphs in the left and right

margins of the Source Editor as shown in the following figure:

1 [|-
2 = ect Properties
3 *
4
5 L =
[3
7| B /e
g *
9 * @anthor asma
10, = =/
11 puklic class MainClass {
* @param args the command line arguments

public static void main (String[] args) {
sxstem.out.println(“3.'-2'_:::'.-3 to Javal!™);

You can mouse over an error mark to get a description of the error as in the following figure:

115 /=

2 "

3 -

4 -

s L -

&

? El -__.-__

g "

g fanthor asma
0 = =/

11 pubklic class MainClass {
1z

!
]

package system does not exist|= comman

(Alt-Enter shows hints)

m
w
m
i}

ot

[
() BT L)
—

d main (String[] args) {

System. out.println("Welcome to Javal!"™);

B @ o
—
-

[S
[=T}
L

Y
J

F 4
A\

¢ Part I1I: Programming Errors Examples (1.10.1-3).
1. Syntax Errors:
Syntax errors result from errors in code construction, such as mistyping a keyword, omitting some
necessary punctuation, or using an opening brace without a corresponding closing brace. These
errors are usually easy to detect because the compiler tells you where they are and what caused
them.

Missing void keyword

public class ShowSyntaxErrors {
public static'main(String[] args) {
System.out.printIn("Welcome to Java);

}

Vi B WN

}
Missing closing quotation mark

2. Run-time Errors:
Input mistakes typically cause runtime errors. An input error occurs when the program is waiting
for the user to enter a value, but the user enters a value that the program cannot handle. For
instance, if the program expects to read in a number, but instead the user enters a string, this causes
data-type errors to occur in the program.
Another example of runtime errors is division by zero. This happens when the divisor is zero for
integer divisions.

1 public class ShowRuntimeErrors {

2 public static void main(String[] args) {
3 System.out.printin(l / 0);

4 }

5 1

3. Logical Errors:
The following figure shows an example of a logical error. The program must convert Celsius 35
degrees to a Fahrenheit degree. You will get Fahrenheit 67 degrees, which is wrong. It should be
95.0. In Java, the division for integers is the quotient—the fractional part is truncated—so in Java
9/51s 1. To get the correct result, you need to use 9.0 / 5, which results in 1.8.
public class ShowlLogicErrors {
public static void main(String[] args) {
System.out.println("'Celsius 35 is Fahrenheit degree ");
System.out.printin((9 / 5) * 35 + 32);
¥
}

[¥, N S WE T Sy S

< Part IV: Common Errors (1.10.4).

Common Error 1: Missing Braces

public class Welcome {

} «—Type this closing brace right away to match the opening brace

Common Error 2: Missing Semicolons

public static void main(String[] args) {
System.out.println("Programming is fun!");
System.out.println("Fundamentals First");
System.out.println("Problem Driven')

}

Missing a semicolon

Common Error 3: Missing Quotation Marks
System.out.printIn("Problem Driven);

Missing a quotation mark

Common Error 4: Misspelling Names

public class Test {
public static void Main(string[] args) {
System.out.printin((10.5 + 2 * 3) / (45 - 3.5));
}
}

¢ Part V: The print and printf statements (4.6)
The print method is identical to the print/n method except that print/ln moves to the beginning of
the next line after displaying the string, but print does not advance to the next line when completed.

You can use the System.out.printf method to display formatted output on the console.

double amount = 12618.98;

double interestRate = 0.0013;

double interest = amount * interestRate;

System.out.printf("Interest 1is $%4.2f", field width conversion code
interest);

-=— format specifier

precision

Interest is $16.40

The syntax to invoke this method is:
System.out.printf(format, iteml, item?2, ..., itemk)

Where format is a string that may consist of substrings and format specifiers. A format specifier
specifies how an item should be displayed. An item may be a numeric value, a character, a Boolean
value, or a string. A simple format specifier consists of a percent sign (%) followed by a conversion
code.

TABLE 4.11 Frequently Used Format Specifiers

Format Specifier Output Example

%b a Boolean value true or false

%C a character ‘a’

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4,556000e +01

%s a string “Java is cool”
An Example:

int count = 5; items

double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

f |

display count is 5 and amount is 45.560000

TABLE 4.12 Examples of Specifying Width and Precision

Example Output

%5¢C Output the character and add four spaces before the character item, because the
width is 5.

%6b Output the Boolean value and add one space before the false value and two spaces
before the true value.

%5d Output the integer item with width at least 5. If the number of digits in the item is
<= 5, add spaces before the number. If the number of digits in the item is = 3, the
width is automatically increased.

%10.2f Output the floating-point item with width at least 10 including a decimal point
and two digits after the point. Thus, there are 7 digits allocated before the decimal
point. If the number of digits before the decimal point in the item is << 7, add spaces
before the number. If the number of digits before the decimal point in the item is
= 7, the width is automatically increased.

%10.2e Output the floating-point item with width at least 10 including a decimal point, two
digits after the point and the exponent part. If the displayed number in scientific
notation has width less than 10, add spaces before the number.

%12s Output the string with width at least 12 characters. If the string item has fewer

than 12 characters, add spaces before the string. If the string item has more than
12 characters, the width is automatically increased.

By default, the output is right justified. You can put the minus sign (-) in the format specifier to
specify that the item is left justified in the output within the specified field.

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 1: Getting Started + Fundamentals
Eng. Asma Abdel Karim

1. Write a statement that prints your name and ID to one line of the console.

2. Write a statement that prints the result of the operation % * 2.5 along with the operation

as follows:
4/3*%2.5= 3.333333333333333

3. Write a statement that prints the result of the operation % * 2.5 along with the operation

as follows (showing two decimal digits only to the right of the point):
4/3*2.5=3.33

4. Write the following statements:
a. Define an integer variable named x (without initializing it).
b. Try printing the value of x using the print statement
System.out.println("x= "+x);
Identify the problem.

5. Write statements that:
a. Declare and initialize a floating-point value that represents the radius of a
circle.
b. Define and initialize as a constant
c. Compute the area of the circle.
d. Print the following statement:
Circle with radius ____has area of .

Note: your program must print correct output for any possible radius value.

6. Write statements that:
a. Declare and initialize two double variables (X with the value 3.5 and Y with the
value 2.5).
Print the result of adding the two variables as follows: 3.5 +2.5=6.0
Print the result of subtracting the two variables as follows: 3.5 —2.5=1.0
Print the result of multiplying the two variables as follows: 3.5 * 2.5 = 8.75
e. Print the result of dividing the two variables as follows: 3.5/2.5=1.4

oo o

Note-1: your code must print correct results if the values of variables X and Y are
changed. You must not write your code to assume that the value of X is fixed to 3.5 and
the value of Y is fixed to 2.5.

Note-2: when printing the result of each operation, pay attention to the necessity of
adding parenthesis. For example, for the “addition” operation try the following two
statements and check which one produces correct result:

System.out.printin(X+" + "+Y+" = "+X+Y);

System.out.printin(X+" + "+Y+" = "+(X+Y)),;

Try adding and removing the parenthesis in the print statement of each operation. For
which operations is it required to add the parenthesis? For which operations adding the
requirements is not a necessity?

7. Write statements that:
a. Declare and initialize an integer variable ‘a’ and initialize it. Then declare a double
variable ‘b’ and assign the value of ‘a’ to it. Does it work?
b. Declare and initialize a double variable ‘c’ and initialize it. Then declare an integer
variable ‘d’ and assign the value of ‘¢’ to it. Does it work?
c. Declare and initialize a float variable ‘m’ and assign the value 3.5 to it. Does it
work?

Jordan University
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

Lab-2 Tutorial: Programming Fundamentals + Methods

Eng. Asma Abdel Karim

+» Tutorial contents:
e Part I: Common Errors and Pitfalls.
e Part II: Reading Input from the Console
e Part III: Passing Parameters by Values.

«+ Part I: Common Errors and Pitfalls (2.18. 3.6)

Common Error 1: Undeclare/Uninitialized Variables and Unused Variables.

double interestRate = 0.05;
double interest = interestrate * 45;

double interestRate = 0.05;
double taxRate = 0.05;

double interest = interestRate * 45;
System.out.printin("Interest is "

+ interest);

Common Error 2: Unintended Integer Division.

int numberl :
int number2 = 2;
double average = (numberl + number2) / 2;
System.out.printIin(average);

o
N

int numberl :
int number2 = 2;
double average = (numberl + number2) / 2.0;
System.out.println(average);

In
[V]

Common Error 3: Forgetting Necessary Braces.

if (radius == 0)

area = radius * radius * PI;
System.out.printin("The area

if (radius >= 0) {

area = radius * radius * PI;
System.out.printin("The area "

+ " dis " 4+ area); + " 1ds " + area);
}
(a) Wrong (b) Correct
Common Error 4: Wrong Semicolon at the If Line.
Logic error Empty block
if (radius »= 0);ﬁh if (radius >= 0) {'};
{ {

System.out.printin("The area "
+ " s " + area);

la)

area = radius * radius * PI; Equivalent area = radius * radjus * PI:

System.out.printin("The area "
+ " s " + area);

(b)

Common Error 5: Dangling else Ambiguity.

(a)

Common Pitfall 1: Redundant Input Objects.

int i =1, j =2, k = 3;
Equivalent
if (0>)
if (i > k)
System.out.printin("A");
else d g ¢) This is better
System.out.printIin("B"); with correct ——
indentation

int 1

if (>)
if (3 > k)
System.out.printin("A");
else
—» System.out.println("B");

(b)

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int vl = input.nextInt();

Scanner inputl = new Scanner(System.in);
System.out.print("Enter a double value:
double v2 = inputl.nextDouble();

BAD CODE

)3

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int vl = input.nextInt();
System.out.print("Enter a double value: '’
double v2 = input.nextDouble();

GOOD CODE

)

Common Pitfall 2: Redundant Testing of Boolean Values.

if (even == true)
System.out.printin(
"It is even.'");

Equivalent

This is better
(a)

if (even)
System.out.printin(
"It is even.");

(b)

Common Pitfall 3: Simplifying boolean Variable Assignment.

boolean even
number % 2 = 0;

if (number % 2 == 0)]
even = true; Equivalent
else
even = false; Thhisshoner”//
(a)

(b)

Common Pitfall 4: Avoiding Duplicate Code in Different Cases.

if (inState) {
tuition = 5000;
System.out.printin("The tuition is
}
else {
tuition = 15000;
System.out.printin("The tuition is
}

+ tuition);

+ tuition);

«+ Part II: Reading Input from the Console (2.3, 2.9.2. 4.4.5. 4.4.6).

Java uses System.out to refer to the standard output device and System.in to the standard input device. By
default, the output device is the display monitor and the input device is the keyboard.
To perform console output, you simply use the println method to display a primitive value or a string to
the console. Console input is not directly supported in Java, but you can use the Scanner class to create
an object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

The syntax new Scanner(System.in) creates an object of the Scanner type. The syntax Scanner input
declares that input is a variable whose type is Scanner. The whole line Scanner input = new
Scanner(System.in) creates a Scanner object and assigns its reference to the variable input. An object
may invoke its methods. To invoke a method on an object is to ask the object to perform a task. You can
invoke the nextDouble() method to read a double value as follows:

double radius = input.nextDouble();

This statement reads a number from the keyboard and assigns the number to radius.
import java.util.Scanner; // Scanner is in the java.util package import class

public class ComputeAreaWithConsoleInput {
public static void main(String[] args) {
// Create a Scanner object
Scanner input = new Scanner(System.in); create a Scanner

// Prompt the user to enter a radius
System.out.print("Enter a number for radius: ");
double radius = input.nextDouble(); read a double

// Compute area
double area = radius * radius * 3.14159;

// Display results

System.out.printIn("The area for the circle of radius " +
radius + " 1is " + area);

Methods for reading numbers using the Scanner class:

Method Description

nextByte() reads an integer of the byte type.
nextShort() reads an integer of the short type.
nextInt() reads an integer of the int type.
nextlLong () reads an integer of the Tong type.
nextFloat() reads a number of the float type.
nextDouble() reads a number of the doubTe type.

Examples for reading values of various types from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter a byte value: ");
byte byteValue = input.nextByte();

System.out.print("Enter a short value: ");
short shortValue = input.nextShort();

System.out.print("Enter an int value: ");
int intValue = input.nextInt();

System.out.print("Enter a long value: ");
long longValue = input.nextlLong();

System.out.print("Enter a float value: ");
float floatValue = input.nextFloat();

To read a string from the console, invoke the nex#() method or the nextLine method on a Scanner Object. The
next() method reads a string that ends with a whitespace character. You can use the nextLine() method to
read an entire line of text. The nextLine() method reads a string that ends with the Enter key pressed.
Example using the next() method:

Scanner input = new Scanner(System.in);
System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();
String s2 = input.next();
String s3 = input.next();

System.out.println("sl is " + s1);
System.out.println("s2 is " + s2);
System.out.println("s3 is " + s3);

Example using the nextLine() method:

Scanner input = new Scanner(System.in);
System.out.printin("Enter a Tine: ");
String s = input.nextLine();
System.out.printin("The Tine entered is

"

+ 5);

Enter a Tine: Welcome to Java | -enter
The 1ine entered is Welcome to Java

To read a character from the console, use the nextLine() method to read a string and then invoke the
charAt(0) method on the string to return a character.

Scanner input = new Scanner(System.in);
System.out.print("Enter a character: ");

String s = input.nextLine();

char ch = s.charAt(0);

System.out.printin("The character entered is " + ch);

% Part I11: Passing Parameters by Values.

When you invoke a method in Java, the value of the argument is passed to the parameter. This is referred
to as pass-by-value. If the argument is a variable rather than a literal value, the value of the variable is
passed to the parameter. The variable is not affected, regardless of the changes made to the parameter

inside the method.

The following example will print the value of max 0, since 1) the variable max inside the max method is
different from the variable max in the main method, and 2) the value of the variable max of the main
method is passed to the variable max in the max method. Changes to the max variable inside the max
method do not affect the max variable in the main method.

public class MainClass {

public static void main(String/[] args) {
int max = 0;
max (1, 2, max);
System.out.println(max);
}
public static void max(int valuel, int value2, int max){

if (valuel > value2) max = valuel;
else max = value2;

J
/

The following example gives another program that demonstrates the effect of passing by value. The
program creates a method for swapping two variables. The swap method is invoked by passing two
arguments. Interestingly, the values of the arguments are not changed after the method is invoked.

1
1

H O W oo~ o R

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public class TestPassByValue {
/*¥% Main method */
public static void main(String[] args) {

}

// Declare and initialize variables

int numl = 1;

int num2 = 2;

System.out.printin("Before invoking the swap method, numl 1is " +
numl + " and num2 is " 4+ num2);

// Invoke the swap method to attempt to swap two variables

swap(numl, num2);

System.out.println("After invoking the swap method, numl 1is " +
numl + " and num2 s " + num2);

/** Swap two variables */
public static void swap(int nl, int n2) {

System.out.println("\tInside the swap method");
System.out.printin("\t\tBefore swapping, nl is

+ and n2 is " + n2);

+ nl

// Swap nl with n2
int temp = nl;

nl = n2;

nZ2 = temp;

m

System.out.println("\t\tAfter swapping, nl is " + nl

+ and n2 is " + n2);

Before invoking the swap method, numl is 1 and num2 is 2
Inside the swap method

Before swapping, nl is 1 and n2 1is 2
After swapping, nl is 2 and n2 is 1

After invoking the swap method, numl is 1 and num2 is 2

The values for nl and n2 are

The values of numl and num2 are swapped, but it does not affect
passed to nl and n2. numl and num?2.
]
|II
Activation record for | | Activation record for
the swap method || the swap method
temp: f temp: 1
n2: 2 |7y n2: 1
nl: 1 "‘“:'| nl: 2
1
Activation record for Activation record for : | | Activation record for Activation record for
the main method the main method : : the main method the main method Stack is empty
1
num2: 2 num2: 2 - : num2: 2 numZ: 2
numl: 1 numl: lf=—= numl: 1 numl: 1
The main method The swap method The swap method The swap method The main method
is invoked. is invoked. is executed. is finished. is finished.

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 2: Programming Fundamentals + Methods
Eng. Asma Abdel Karim

Part-1: In your main method write a program that: (3 points)

Keeps on reading double values from the user, until the user enters the number 0. When the
user finishes entering the numbers, the program must print their average to the console as
follows:

Average of the numbers you entered is:

Part-2: In your main class write the following methods: (3 points)

1. Define a method named printEven that takes two integer numbers and prints the even
numbers between these two numbers (inclusive) comma separated, then a new line.

For example, if the passed integers are 1 and 10, the method must print:
2,4,6,8,10

This method assumes that the first passed integer is smaller than the second.
The header of the method is:

public static void printEven (int nl, int n2)
2. Define a method named getEven that takes two integer numbers and returns a String that
includes the even numbers between these two numbers (inclusive) comma separated,

then a new line.

For example, if the passed integers are 1 and 10, the method must return the String:
2,4,6,8,10

This method assumes that the first passed integer is smaller than the second.
The header of the method is:

public static String getEven (int nl, int n2)
3. In your main method, read two integer numbers from the user. Prompt the user to enter
the required input with appropriate messages as follows: "Enter first number: ", "Enter

second number:". Then, invoke both methods to print their output.

Note: Make sure you pass the minimum of the two numbers as the first argcument and
the maximum as the second argument.

Part-3: In your main class you are required to write the following methods: (4 points)

l.

Define a method named gcd that takes two integer numbers and returns the greatest
common divisor of these two numbers. The header of the method is:

public static int gcd (int nl, int n2)

For example, if the passed integers are 16 and 56, the method must return the number 8.

. Define a method named /cm that takes two integer numbers and returns the least common

multiple of these two numbers. The header of the method is:

public static int lcm (int nl, int n2)

For example, if the passed integers are 16 and 20, the method must return the number 80.

. Define a method named sum that takes two integers and returns the sum of all numbers

between these two integers (inclusive). The header of the method is:
public static int sum (int nl, int n2)
For example, if the passed integers are 6 and 10, the method must return the number 40.

Note: The method must produce the summation even if the first number is greater than
the second. For example, if the passed integers are 10 and 6, the method must return 40
as well.

4. In your main method, read two integers from the user then one of the characters ‘g’, ‘I’,

or ‘s’. If the user enters any character other than these characters, the program must

keep on prompting the user to enter a valid character.
Then, based on the entered character, invoke the appropriate method from the methods

above (g =2 gcd, 1 2 lem, s = sum) and print the output properly.

For example:
- If the user enters the numbers 6, 10, and the character s, the program must print the

statement:
Sum of numbers between 6 and 10 is 40.

- If the user enters the numbers 6, 10, and the character g, the program must print the

statement:
GCD of numbers 6 and 10 is 2.

- If the user enters the numbers 6, 10, and the character 1, the program must print the

statement:
LCM of numbers 6 and 10 is 30.

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 3: Arrays
Eng. Asma Abdel Karim

% Tutorial Contents:

Part-1: Common Mathematical Functions
Part-2: Examples on Processing Arrays.
Part-3: Passing Arrays to Methods.
Part-4: Returning Arrays from Methods.

< Part-1: Common Mathematical Functions.

Java provides many useful methods in the Math class for performing common mathematical functions.
They can be categorized as trigonometric methods, exponent methods, and service methods. Service
methods include the rounding, min, max, absolute, and random methods.

In addition to methods, the Math class provides two useful double static constants, Pl and E (the base
of natural logarithms). You can use these constants as Math.P1 and Math.E in any program.

TABLE 4.1 Trigonometric Methods in the Math Class

Method Description

sin{radians) Returns the trigonometric sine of an angle in radians.
cos(radians) Returns the trigonometric cosine of an angle in radians.
tan{radians) Returns the trigonometric tangent of an angle in radians.
toRadians (degree) Returns the angle in radians for the angle in degree.
toDegree(radians) Returns the angle in degrees for the angle in radians.
asin(a) Returns the angle in radians for the inverse of sine.
acos(a) Returns the angle in radians for the inverse of cosine.
atan(a) Returns the angle in radians for the inverse of tangent.

TaBLE 4.2 Exponent Methods in the Math Class

Method Description

exp(x) Returns e raised to power of x (e™).

Tog(x) Returns the natural logarithm of x (In(x) = log,(x)).
Togld{x) Returns the base 10 logarithm of x (log 5(x)).
pow(a, b) Returns a raised to the power of b (a").

sqri(x) Returns the square root of x (V) for x == 0.

K/
0’0

TaBLE 4.3 Rounding Methods in the Math Class

Method Description

ceil(x) x 1 rounded up to its nearest integer. This integer is returned as a double value.

floor(x) x 15 rounded down to its nearest integer. This integer 1s returned as a double value.

rint{x) x 1s rounded up to its nearest integer. If x is equally close to two integers, the even one is returned as a double value.
round (x) Returns (int)Math.floor(x + 0.5) if x is a float and returns (long)Math.floorix + 0.5) if x is a double.

The min and max methods return the minimum and maximum numbers of two numbers (int, long, float,
or double). For example, max(4.4, 5.0) returns 5.0, and min(3, 2) returns 2.

The abs method returns the absolute value of the number (int, long, float, or double). For example:
Math.abs(-2) returns 2
Math.abs(-2.1) returns 2.1

The random method generates a random double value greater than or equal to 0.0 and less than 1.0:
0 <= Math.random() <1.0.

You can use it to write a simple expression to generate random numbers in any range. For example:

Returns a random integer
between 0 and 9.

o , . Returns a random integer
50 + (int)(Math.randomQ) * 50) ———— poiween 50 and 99.

(int)(Math.random() * 10) _—

In general:

Returns a random number between a

*
_ > :
a + Math.random() * b anda + b,excluding a + h.

Part-2: Examples on Processing Arrays.

Finding the largest element: Use a variable named max to store the largest element.
Initially max is myList[0]. To find the largest element in the array myList, compare
each element with max, and update max if the element is greater than max.

double max = myList[0];

for (int i 1; i < myList.length; i++) {
if (myList[i] > max) max = myList[i];

}

Finding the smallest index of the largest element: Often you need to locate the
largest element in an array. If an array has multiple elements with the same largest
value, find the smallest index of such an element. Suppose the array myList is {1, 5, 3,
4,5, 5}. The largest element is 5 and the smallest index for 5 is 1. Use a variable named
max to store the largest element and a variable named indexOfMax to denote the index
of the largest element. Initially max is myList[0], and indexOfMax is 0. Compare each
element in myList with max, and update max and indexOfMax if the element is greater
than max.

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < myList.length; i++) {
if (myList[i] > max) {
max = myList[i];
indexOfMax = 1i;
}
}

e Random shuffling: In many applications, you need to randomly reorder the elements
in an array. This is called shuffling. To accomplish this, for each element myList[i],
randomly generate an index j and swap myList[i] with myList[j], as follows:

for (int i = myList.length - 1; i > 0; i--) { myList

Generate an index j randomly with 0 <= j <=1 i > (0]
int j = (int) (Math.random() 1]

0o+ 1)); -
A random index [j] /

Swap myList[i] with myList[j] .
double temp = myList[1]; | [swap
myList[i] = myList[j];
myList[j] = temp; I

e Shifting elements: Sometimes you need to shift the elements left or right. Here is an
example of shifting the elements one position to the left and filling the last element
with the first element:

double temp = myList[0]; Retain the first element
Shift elements left myList
for (int i = 1; i < myList.length; i++) {
myList[i - 1] = myList[i];
} CE >
Move the first element to fill in the Tast position

myList[myList.length - 1] = temp;

«» Part-3: Passing Arrays to Methods.

The following example shows the difference between passing a primitive data type value
and an array reference variable to a method. The program contains two methods for
swapping elements in an array. The first method named swap, fails to swap two integer
arguments. The second method named swapFirstTwolnArray, successfully swaps the first
two elements in the array argument.

The output of this program is as follows:

Before invoking swap

array is {1, 2}

After invoking swap

array is {1, 2}

Before invoking swapFirstTwoInArray
array is {1, 2}

After invoking swapFirstTwoInArray
array is {2, 1}

As shown in the output, the two elements are not swapped using the swap method. However,
they are swapped using the swapFirstTwolnArray method. Since the parameters in the swap
method are primitive type, the values of a[0] and a[1] are passed to nl1 and n2 inside the
method when invoking swap (a[0], a[1]). The memory locations for n1 and n2 are
independent of the ones for a[0] and a[l1]. The parameter in the swapFirstTwolnArray
method is an array. The reference of the array is passed to the method. Thus the variables a
(outside the method) and array (inside the method) both refer to the same array in the same

memory location. This is shown in the following figure:

1 public class TestPassArray {

2 J*¥% Main method */

3 public static void main(String[] args) {

4 int[] a = {1, 2};

5

6 // Swap elements using the swap method

7 System.out.printIn("Before invoking swap");

8 System.out.printin("array is {" + a[0] + "

9 swap(al[0], a[ll);
10 System.out.printIn("After 1invoking swap");
11 System.out.printin("array is {" + a[0] + "
12
13 // Swap elements using the swapFirstTwoInArray method
14 System.out.println("Before 1invoking swapFirstTwoInArray');
15 System.out.printin("array is {" + a[0] + ", " + a[l1] + "
16 swapFirstTwoInArray(a);
17 System.out.printIn("After invoking swapFirstTwoInArray');
18 System.out.printIn("array 1is {" + a[0] + "
19 }
20

21 /%% Swap two variables */
22 public static void swap(int nl, int n2) {

23 int temp = nl;
24 nl = n2;

25 nZ = temp;

26 }

27

28 /*% Swap the first two elements in the array */
29 public static void swapFirstTwoInArray(int[] array) {

30 int temp = array[0];
31 array[0] = array[1];
32 array[1] = temp;

33 }

34 }

"+ alll + "1");

false swap

Swap array € lements

Stack Heap Stack

Activation record for the
swapFirstTwoIlnArray

Activation record for method
the swap method int[] array 4--:
n2:2 4&==——
nl:1 4, I — :
Activation record for | | 1 Activation record for the ||
the main method : ! main method !
i —L L < i reference f—
int[] a | reference L_]I___ a[0]:1 \ int[] a
l—-4afl]:2
Invoke swap(int nl, int n2). Thearraysare Invoke swapFirstTwoInArray(int[]
The primitive type values in storedin a array). The reference value in a is passed
al0] and a[1] are passed to the heap. to the swapFirstTwoInArray method.

swap method.

% Part-4: Returning Arrays from Methods.

For example, the following method returns an array that is the reversal of another array.

public static int[] reverse(int[] Tist) {
int[] result = new 1int[list.length];

]
2

3

4 for (int i = 0, j = result.length - 1;
5 i < Tist.length; i++, j--) {

6 result[j] = Tist[i];
7

8

9

0

) st [T}] [T]

|
return result; result | | | [Y]Y]

10 }

For example, the following statement returns a new array list2 with elements 6, 5, 4, 3, 2,
1.

int[] Tistl {1, 2, 3, 4, 5, 6};
int[] 1ist2 = reverse(listl);

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 3: Arrays
Eng. Asma Abdel Karim

Note: You are not allowed to use methods from the Arrays class.

In vour main method, follow the steps below, to write the required code:

1.

Declare a reference variable to an array of integer elements. The name of the variable is /ist/.

Remember that the syntax for declaring a reference variable is:
elementType [] refVariable;

Print the reference variable to the console, as in the statement below, and observe and understand what
happens. Then, comment the print statement.
System.out.printin(listl),

Create an array of five integer values and assign its reference to the variable /ist/.

Remember that the syntax for creating an array is:
new elementType[arraySize],

In order to assign the returned reference to a reference variable, we put the new statement to the right
of an assignment statement to a reference variable.
refVariable = new elementType[arraySize];

Combine array declaration and creation such that they are on the same line as in the following syntax:
elementType [] refVariable= new elementType[arraySize];

Try to print the value of the reference variable to the console again and observe the output.

Print the values of the array elements all on the same line comma separated using a “for” loop. For
this part, use a for loop with the following header:

for(int i=0, i<listl.length; i++)
//print statement

Make sure to print a new line after printing the array elements.

Assign values to the array elements using a “for” loop with a header similar to that in the previous
step. Read the values to be assigned from the user using an appropriate prompting message.

Note: prompt the user to enter positive values. For each element, if the user enters an invalid value
(zero or negative value), you must keep on prompting the user until a positive value is entered.

Print elements values to the console again, on the same line comma separated, this time using the
“foreach” statement as follows:

foreach(int e:listl)
//print statement

Make sure to print a new line after printing the array elements.

8. Declare and create an array of ten integers named /isz2, then initialize elements’ values with random
numbers between [100-200]. Then print elements values to the console on the same comma space
separated. Make sure to print a new line after printing the array elements.

9. Declare and create a new array, named /isz3, that is formed by concatenating elements of /ist/ and
list2. Remember to declare the array /ist3 such that its length is equal to the sum of /is¢t/ and list2
lengths.

- Try copying elements from /is¢t/ and list2 to list3 using for loops.
- Try copying elements from list/ and /ist2 using the arraycopy method of the System class.
Keep and submit both approaches (you can comment one them).

Print the elements of list3 on the same line comma separated. Make sure to print a new line after
printing the array elements.

10. Find the maximum and minimum values in the array list3, and print them to the console as follows:
Maximum value in list3 is , minimum value is

11. In this step, new elements are to be added to /ist3. Ask the user to enter the number of elements to be

added then read elements values from the user. Print the array elements after the new elements are
added.

Remember that in order to add elements to an array, you have to define a new array with the required
size (resulting from adding the elements) and copy elements from the old array then insert new values
into the extra positions and reassign the new reference to the array variable.

12. In this step, the user must be prompted to enter a value to be removed from /ist3, then remove all
occurrences of this value from /isz3. Print the array elements after the value is removed.

Remember that in order to remove elements from an array, you have to define a new array with the
required size (resulting from removing the elements) and only copy required elements then reassign
the new reference to the array variable.

Jordan University
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

Lab-4 Tutorial
Eng. Asma Abdel Karim

¢ Tutorial contents:
e Part I: Class Definition (Without Constructors).
e Part Il: Class Definition (With Constructors).

% Part I: Class Definition (Without Constructors).

The following UML diagram represents a class called Student.

Student
name: String
id: int
isScienceMajor: boolean
gender: char
grades: double[]
printDetails():void
getAverage(): double

The Student class contains the following data fields:
A String data field called name.
An integer data field called id.
A boolean data field called isScienceMajor.
A character data field called gender.
An array of double values that represent the student grades.

The Student class contains the following methods:

A method called printDetails that prints the student details: his id, name and gender on one line, his
grades on the next line space separated, and the average of his grades on the last line, as in the
following example:

Student name is Asma, Student id is 88888, Gender: F.

Is the student major scientific? yes

19.0 18.0 19.0 20.0

Average= 19

A method called getAverage that computes and returns the average of the student grades.

The code for the Student class shown in the UML diagram above is listed in the file Lab4Partl.java.

Note that the name data field has a default value of “Unknown”, the id has a default value of -
1, the isScienceMajor has a default value of true, the gender has a default value of ‘F’, and the
grades data field has a default creation of an array of three double values (which will be
initialized to 0’s). However, for this class that has no constructors, if the data fields were not
given default values by the programmer, they will be assigned to the language defaults. These
are null for the name and grades data fields. Trying to use a reference variable with null value
will cause a run time error called NullPointerException.

e Obijects Declaration and Creation.

Objects are reference data types. In order to define objects in your program, you need to declare a
reference variable to the object type, then create the object using the new operator. The following main
method declares and creates two objects of type student. Note that each object has its own copy of the
class data fields: name, id, and grades.

public class MainClass {
public static void main(String[] args) {
Student s1 = new Student();
Student s2 = new Student();

¥
¥

e Accessing Objects Members.

In order to access the members (data fields and methods) of an object we use the dot (.) operator. The
following MainClass is listed in the file Lab5Part1.java.

public class MainClass {
public static void main(String[] args) {

Student s1 = new Student();
Student s2 = new Student();

sl.name = "Ahmed";

sl.id = 138219;

s1.grades[0] = 20;

sl.grades[1] = 19;

sl.grades[2] = 15;
System.out.printin(s1.name);
System.out.printin(sl.getAverage());

s2.grades[0]=12;
s2.grades[1]=19;
s2.grades[2]=14;
s2.printDetails();

«+ Part I1: Class Definition (With Constructors).

The following is the UML diagram of the Student class after adding constructors.

Student

name: String

id: int

isScienceMajor: boolean

gender: char

grades: doublef]

Student()

Student(n: String, i: int, g: char, size: int)
Student(n: String, i: int, g:char, gr: double[])
printDetails():void

getAverage(): double

The following code implements the class after adding the constructors. Each constructor initializes the
data fields in a different way.

The no-arg constructor Student() does not overwrite any of the data fields, it only initializes all
elements of the array grades to 20.
The second constructor Student(n: String, i:int, g:char, size:int) assigns each data field with the
corresponding parameter (i.e. name is initialized using the parameter n, id is initialized using the
parameter i, and gender is initialized with the parameter g). The parameter size is used to create the
array grades. The array elements are initialized to 20.
The third constructor Student(n: String, i:int, g:char, gr:double[]) assigns each data field with the
corresponding parameter (i.e. name is initialized using the parameter n, id is initialized using the
parameter i, and gender is initialized with the parameter g). The array grades is initialized such that
its elements have the same values of corresponding elements in the array gr. There are two
approaches to do that:
1. Copy the reference in gr to the variable grades:

grades = gr;
2. Create a new array referenced by grades with the same size as gr, and copy values of gr elements

to corresponding elements in grades.

grades = new double[gr.length];

for(int j=0; j<grades.length; j++)

grades[j1=gr[il;

The implementation of the Student class shown in the UML diagram above, and a MainClass that
includes a test of the Student class is listed in the file Lab4Part2A.java.

In the Student class implemented in Lab4Part2B.java, the no-argument constructor is implemented such
that it reads all data fields’ values from the user.

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 4: Objects & Classes
Eng. Asma Abdel Karim

% Lab Obijectives:

e To become familiar with the following:
Defining classes.
Declaring and creating objects.
Accessing objects’ members.
Declaring constructors.

YV VY

In this lab, you will implement a class that represents a Course and place it in the same file that contains
your main class, as follows:

- Create a project as in the previous labs and create a class that contains the main method named
MainClass.

- Write the header for the Course class in the same file (MainClass.java) either before or after (but not
inside) the body of the MainClass, as shown in the following screenshots.
Note that you cannot define two public classes in the same file. This is why the header of the Course
class does not include the public modifier.

2 class Course/{

.

5 p public class MainClass {

6
7 public static void main(String[] args) {
|
9 } 1
10 2 public class MainClass {
11 } 3
12 public static void main(String[] args) {
-
6 }
7
8 }
class Course{
10
11 }

12 |

Part-1: Implementing the Course class without constructors:

Course

name: String
number: int
instructor: String
students: int[]

getNumberOfStudents(): int
printStudentsIDs(): void
addStudent(): void
removeStudent(): boolean

1. Inside the body of the Course class:

a. Define the data fields name, number, faculty, and students according to their data types in the UML
diagram. The students array includes 1Ds of students registered in the course.
For example, the following statement declares the data field name:
String name;

b. Define the method getNumberOfStudents that returns the number of students registered in the course,
which is the size of the students array.

c. Define the void method printStudentsiDs which prints IDs of students (elements of the students array)
on one line space separated and prints a new line afterwards.

d. Define the method addStudent which reads an integer from the user that represents a student 1D and
add it to the array students. Prompt the user to enter the ID with the message: "Enter student ID to be
added: ".

e. Define the method removeStudent which reads an integer from the user that represents a student 1D,
and searches the students array for the requested ID. If it is found, it must remove it from the array
and return true. If it is not found, it must return false. Prompt the user to enter the ID with the message:
"Enter student ID to be removed: ".

Note: you may assume that each student ID appears only once in the array students.

2. Inyour main method:

a. Declare and create an object of type Course named cl as in the following statement:
Course c1 = new Course();

b. Print the values of the object c1 data fields (name, number, instructor, and students) and observe the
output. Print the values using full statements as follows:
Course name:
Course number:
Course instructor:
Course students reference variable:

Note: In order to access data fields of an object we use the dot operator. For example, in order to print
the value of name of the object c1, we use the following statement:
System.out.printin("Course name:" + c1.name);

c. Invoke the method printStudentsIDs to print values of the students array elements. Observe and justify
the output.

Note: in order to invoke the printStudentsIDs method for the object c1, use the dot operator as in the
following example:
cl.printStudentsiDs();

Remember_that since printStudentsIiDs is a void method, you must invoke it as a separate
statement.
d. Inthe Course class, add initialization to the declaration of the data fields as follows:
String name = “unknown”;
int number = -1;
String instructor = “unknown’’;
int [] students = new int [5];

- Rerun your code and observe the output.

e. Inyour main method, assign the following values to the data fields of the object c1.:
Name: Java
Number: 907342
Instructor: Asma
Students IDs: 192, 172, 423, 123, 342.

Note: In order to assign values to data fields we access them using the dot operator as in the following
example:
cl.name = “Java”;

f. Invoke the method addStudent to add an ID to the students array. Invoke the printStudentsiDs method
to print the students IDs and check the added ID.

g. Invoke the method removeStudent to remove an ID from the students array. Invoke the
printStudentsIDs method to print the students IDs and check that the ID is removed.

Part-2: Implementing the Course class with constructors:

Course

name: String
number: int
instructor: String
students: int[]

Course()

Course(n:String, num:int, i:String, s: int[])
getNumberOfStudents(): int
printStudentsIDs(): void

addStudent(id: int): void
removeStudent(id:int): boolean

1. Inside the body of the Course class:

a. Declare a constructor with the following header (remember that constructors do not have return types):

Course(String n, int num, String i, int[] s)

This constructor should initialize name, number, instructor with the values of n, num, i, respectively. As
for the students array, it must be initialized to be a copy of the array passed in the parameter s.

Notice the syntax error that appeared in the declaration of the object ¢l in the main method. Justify
that.

b. Declare a constructor with the following header (remember that constructors do not have return types):

Course()

This constructor should have an empty body for now. Notice that there is no syntax error in the declaration
of the object c1 in the main method any more.

2.

In your main method:

Remove all previous statements in the main method.

a.

b.

Declare and create an array of integers named ids with the following values: {100, 107, 102, 110,
128}.

- Declare and create an object of type Course named c1 as in the following statement:

Course c1 = new Course(“Java”, 907342, “Asma”, ids),

- Print the values of the object c1 data fields (name, number, instructor) each on a separate line, as
follows:

Course name:

Course number:

Course instructor:

- Print the number of students in the course c1 by invoking the getNumberOfStudents method on a
separate line, as follows:

Number of registered students: ...

- Invoke the method printStudentsIDs for the object c1 to print students IDs.

Part-3: Reading input from the user:

In this part, you will add code to the no-arg constructor Course(), which you defined in the previous part,
such that it reads data fields values from the user.

1.

Inside the constructor Course():

Read the data fields (name, number, instructor) values from the user. Remember to prompt the user
with a suitable message for each data field. For example, the following two lines prompt the user to
enter the name of the course, read the user input and assign it to the data field name:
System.out.printin("Please enter course name: ");

name = input.nextLine();

Read the number of students, which represents the size of the array students, from the user. Use the
entered number to create the array students. Then iterate over elements in the array to read the values
of the array elements (students 1Ds) from the user.
a. You must prompt the user by printing appropriate messages to enter the number of students
and to enter the ID in each iteration.
b. The entered number of students must be between [1-60], if the user enters a number that is out
of this range, you must keep on prompting the user to enter a valid humber between 1and 60
and reading an input from the user.

In your main method:

Modify the creation of the course object c1 such that it invokes the no-arg constructor instead of the
other constructor. That is, replace the statement:

Course cl = new Course(“Java”, 907342, “Asma”, ids),

with

Course c1 = new Course();

Rerun your code and test it.

Jordan University
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

Lab-5 Tutorial
Eng. Asma Abdel Karim

¢ Tutorial contents:

Part I: The Static Modifier.

Part I1: Visibility Modifiers.

Part I11: Creating Packages.

Part IV: Passing Objects to Methods.

Part V: Using Classes from the Java Library.

X3

<

Part I: The Static Modifier.

The following UML diagram represents the Student class after adding the Static variables: maxGrade
and numOfStudents, and the Static method resetNumberOfStudents.

Student
name: String
id: int
grades: double[]
maxGrade: double
numOfStudents: int

Student()

Student(n: String, i: int, num: int)
Student(n: String, i: int, g: double[])
getAverage(): double
printDetails():void
resetNumberOfStudents(): void

The Student class represented in the above UML diagram is implemented in the file Student.java in the
folder Lab5Partl.

Note the following:

1. The class Student is declared public which means that it should be stored in a file named
Student.java.

2. The data fields maxGrade, numOfStudents and the method resetNumOfStudents are defined static
by adding the word static to their definition.

3. The static variable numOfStudents gets modified in each constructor such that each time a new
object is created it is incremented by 1.

4. When reading the grades from the user in the no-arg constructor, the value entered by the user is
checked to be between [0-maxGrade]. If the user enters an invalid value, it keeps on prompting
until a valid value is entered.

7
X4

*,

5. The variable maxGrade is printed in the method printDetails. Note that a static member can be
accessed from an instance method. Whereas, an instance member cannot be accessed from a
static method.

The Student class is tested in the main method implemented in the file MainClass.java in the folder
Lab5Partl. Note how the static variables maxGrade and numOfStudents are accessed at the beginning
of the program even before creating any object. Similarly, the resetNumOfStudents method is invoked
before creating any object. All static members are accessed using the class name.

Note also that after creating three objects numOfStudents will become 3. This value is seen when the
variable is printed using the class name or any of the three objects. Note that although it is not
recommended, static members are accessible by instances of the class.

Part 11: Visibility Modifiers.

The following UML diagram shows the previous Student class after encapsulating its data fields, by
adding the private modifier to them and providing accessors and mutators. All constructors and
methods are declared public to be visible from any other class.

Student
- name: String
-id: int
- grades: double[]
- maxGrade: double
- numOfStudents: int

+ Student()

+ Student(n: String, i: int, num: int)
+ Student(n: String, i: int, g: double[])
+ getAverage(): double

+ printDetails():void

+ resetNumberOfStudents(): void
+ setName(n:String): void

+ getName(): String

+ setld(i:int): void

+ getld(): int

+ setGrades(g: double[]): void

+ getGrades(): double []

+ setMaxGrade(max:double): void
+ getMaxGrade(): double

+ getNumOfStudents(): int

The Student class represented in the above UML diagram is implemented in the file Student.java in the
folder Lab5Part2.

Note that now that data fields of the Student class are all private, they cannot be accessed directly from
outside the class. For example, in the main method, writing s1.name or Student.numOfStudents will
cause a compilation error. Similarly, trying to change the values of any of the students objects grades
using a statement like this s2.grades[0]=18 will cause a syntax error as well.

The Student class is tested in the main method implemented in the file MainClass.java in the folder
Lab5Part2. In the implemented main method, both instance and static data fields are accessed using
their mutator (setter) and accessor (getter) methods.

« Part I11: Creating Packages.

Benefits of using packages:

1)
2)

Packages help the programmer manage the complexity of application programs.
Packages facilitate software reuse by enabling programs to import classes from other packages,
rather than copying the classes into each program that uses them.

Steps for creating a reusable class in a package are:

1)

2)

3)

4)

Declare a public class. If the class is not public, it can be used only by other classes in the same
package.
Choose a unique package name and add a package declaration to the source code file for the
reusable class declaration. In each Java source code file there can be only one package declaration
and it must precede all other declarations and statements. Only package declarations, import
declarations and comments can appear outside the braces of a class declaration. A Java source code
must have the following order: 1. A package declaration (if any), 2. Import declarations (if any),
then 3. Class declarations.

If no package statement is provided, the class is placed in the default package and is accessible only

to other classes in the default package that are located in the same directory.

Compile the class so that it is placed in the appropriate package directory. When a Java file

containing a package declaration is compiled, the resulting class file is placed in the directory

specified by the declaration.

Import the reusable class into a program and use the class.

There are two types of import declarations:

a) Single-type-import declaration in which the import declaration specifies one class to import
(e.g. import java.util.Scanner;).

b) When your program uses multiple classes from the same package, you can import those classes
wildcard import (e.g. import java.util.*). Using the asterisk informs the compiler that all public
classes from the java.util package are available for use in the program. This is known as a type-
import-on-demand declaration. Only the classes from package java.util that are used in the
program are loaded by the JVM.

The compiler uses a special object called a class loader to locate the classes it needs. The class loader
searches for classes in the following order:

a) Search the standard Java classes bundled with the JDK.

b) Search the optional packages. Java provides an extension mechanism that enables new
(optional) packages to be added to Java for development and execution purposes

c) Search the classpath, which contains a list of locations in which classes are stored. By default,
the classpath consists only of the current directory.

% Part IV: Passing Objects to Methods.

You can pass objects and return them from methods. Like passing arrays, passing an object is actually
passing the reference of the object. Moreover, returning an object from a method returns the reference of

the object. The Mainclass implemented in the folder Lab5Part4 includes examples of:

A void method (printStudentDetails) that takes an object of type Student and prints its details.

A void method (modifyStudentGrades) that allows one of the grades of the passed student to be
modified by the user.

A method (createStudentWithSameGrades) that takes an object of type Student and returns a new
Student with name and id read from the user and grades copied from the passed Student object.

« Part V: Using Classes from the Java Library.
e The Arrays class
The java.util.Arrays class contains various static methods for sorting and searching arrays, comparing
arrays, filling array elements, and returning a string representation of the array. These methods are
overloaded for all primitive types.

You can use the sort or parallelSort method to sort a whole array or a partial array.
For example, the following code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers); // Sort the whole array
java.util.Arrays.parallelSort(numbers); // Sort the whole array

char[] chars = {'a’, 'A", '4', "F', 'D', 'P'};
java.util.Arrays.sort(chars, 1, 3); // Sort part of the array
java.util.Arrays.parallelSort(chars, 1, 3); // Sort part of the array

Invoking sort(numbers) sorts the whole array numbers. Invoking sort(chars, 1, 3) sorts a partial array
from chars[1] to chars[3-1]. parallelSort is more efficient if your computer has multiple processors.

You can use the binarySearch method to search for a key in an array. The array must be presorted in
increasing order. If the key is not in the array, the method returns —(insertionindex+ 1). For example,
the following code searches the keys in an array of integers and an array of characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.printin("1. Index is " +
java.util.Arrays.binarySearch(list, 11));

System.out.printin("2. Index is " +
java.util.Arrays.binarySearch(list, 12));

char[] chars = {'a", 'c', 'g', "x', 'y', "z'};

System.out.printin("3. Index is " +
java.util.Arrays.binarySearch(chars, 'a'));

System.out.printin("4. Index is " +
java.util.Arrays.binarySearch(chars, "'t'));

The output of the preceding code is
1. Index is 4
2. Index is -6
3. Index is 0
4. Index is -4

You can use the equals method to check whether two arrays are strictly equal. Two arrays are strictly
equal if their corresponding elements are the same. In the following code, listl and list2 are equal, but
list2 and list3 are not.

int[] Tistl = {2, 4, 7, 10};
int[] Tist2 = {2, 4, 7, 10};
int[] Tist3 = {4, 2, 7, 10};
System.out.printin(java.util.Arrays.equals(listl, 1ist2)); // true

System.out.printin(java.util.Arrays.equals(list2, 1ist3)); // false

You can use the fill method to fill in all or part of the array. For example, the following code fills list1
with 5 and fills 8 into elements list2[1] through list2[5-1].

int[] listl = {2, 4, 7, 10};

int[] list2 = {2, 4, 7, 7, 7, 10};

java.util.Arrays.fill(listld, 5); // Fill 5 to the whole array
java.util.Arrays.fill1(list2, 1, 5, 8); // Fill 8 to a partial array

You can also use the toString method to return a string that represents all elements in the array. This
Is a quick and simple way to display all elements in the array. For example, the following code

int[] list = {2, 4, 7, 10};
System.out.printin(Arrays.toString(list));

displays [2, 4, 7, 10].

e The Date class

java.util.Date

+Date() Constructs a Date object for the current time.

4Date(elapseTime: long) Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

+toString(): String Returns a string representing the date and time.

+getTime(): long Returns the number of milliseconds since January 1,
1970, GMT.

+setTime(elapseTime: long): void Sets a new elapse time in the object.

You can use the no-arg constructor in the Date class to create an instance for the current date and time,
the getTime() method to return the elapsed time since January 1, 1970, GMT, and the toString() method
to return the date and time as a string. For example, the following code:
java.util.Date date = new java.util.Date();
System.out.printin("The elapsed time since Jan 1, 1970 is " +
date.getTime() + " milliseconds");
System.out.printin(date.toString());

Displays the output like this:
The elapsed time since Jan 1, 1970 is 1324903419651 milliseconds
Mon Dec 26 07:43:39 EST 2011

The Date class has another constructor, Date(long elapseTime), which can be used to construct a Date
object for a given time in milliseconds elapsed since January 1, 1970, GMT.

e The Random class

javautil. Random

+Random()

+Random(seed: long)
+nextInt(): int
+nextInt(n: int): int
+nextlong(): Tlong
+nextDouble(): double
+nextFloat(): float
+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

Constructs a Random object with a specified seed.
Returns a random 1int value.

Returns a random int value between 0 and n (excluding n).
Returns a random long value.

Returns a random doubTe value between 0.0 and 1.0 (excluding 1. 0).
Returns a random float value between 0.0F and 1.0F (excluding 1. 0F).
Returns a random boolean value.

When you create a Random object, you have to specify a seed or use the default seed. A seed is a
number used to initialize a random number generator. The no-arg constructor creates a Random object
using the current elapsed time as its seed. If two Random objects have the same seed, they will generate
identical sequences of numbers. For example, the following code creates two Random objects with the

same seed, 3.

Random randoml = new Random(3);

System.out.print("From randoml: ");

for (int 1 = 0; i < 10; i++)
System.out.print(randoml.nextInt(1000) + " ");

Random random2 = new Random(3);
System.out.print("\nFrom random2: ");

for (int i = 0; i < 10;

i++)

System.out.print(random2.nextInt(1000) + " ");

The code generates the same sequence of random int values:

From randoml: 734 660 210 581 128 202 549 564 459 961
From random2: 734 660 210 581 128 202 549 564 459 961

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 5: The Static and Visibility Modifiers + Passing Objects to Methods
Eng. Asma Abdel Karim

+» Lab Objectives:
e To become familiar with the following:
% To understand the use of static variables and methods.
% To use static methods from the Java library.

To understand visibility modifiers and data field encapsulation.
To pass and return objects from methods.

In this lab, you will continue working on the Course class you implemented in Lab4.
1. Place the Course class and the MainClass in two separate files.
2. Make sure that you have the last implementation of the Course class from Lab4.
3. Your main method will be initially empty.

The Course class
The modifications you will apply to the Course class are shown in the following UML diagram and
explained below:

Course

- name: String

- number: int

- instructor: String

- students: int[]

- maxNumOfStudents: int = 60

+ Course()

+ Course(n: String, num:int, 1: String, s: int[])
+ getNumberOfStudents(): int

+ printStudentsIDs(): void

+ addStudent(): boolean

+ removeStudent(): boolean

+ incrementMaxNumOfStudents():void
+ isRegistered(id: int): boolean

+ pickRandomStudent(): int

+ getName(): String

+ setName(n: String): void

+ getNumber(): int

+ setNumber(num: int): void

+ getInstructor(): String

+ setlnstructor(i: String): void

+ getMaxNumOfStudents():int

+ getStudents(): int[]

1. Add the private static data field maxNumOfStudents with default value of 60. This field represents
the maximum number of students allowed in a course, and consequently the maximum size allowed
for the students array.

2. Modify the data fields name, number, instructor, and students such that they have private visibility.

3. Modify the constructors and methods in your class to have public visibility.

4. Add the public static method incrementMaxNumOfStudents which increments the
maxNumOfStudents by an amount that is read from the user. You must prompt the user to enter the
number of students to increase the max with using an appropriate message.

5. Modify the Course() constructor such that when reading the number of students (size of array students)
from the user, you compare with the static data field maxNumOfStudents rather than a fixed value of
60.

6. Modify the constructor Course(n: String, num:int, i: String, s: int[]) such that it checks the size of the
passed array s before copying it to the array students. If its size is less than or equals
maxNumOfStudents, it must perform the copying normally. If its size is greater than
maxNumOfStudents, it must copy only the first maxNumOfStudents elements of the array s to the array
Students.

7. Modify both constructors such that they sort the students’ ids in the students array, after initializing it,
in ascending order by invoking the sort method of the Arrays class.

8. Add the public method isRegistered, which takes a student id and returns true if he is registered in the
course, and false otherwise. The method must search for the passed id in the students array. You must
use the binarySearch method of the Arrays class.

9. Add the public method pickRandomStudent which returns the id of a student picked randomly from
the students array.

10. Modify the method addStudent such that it does not add the id to the array students if:

- The size of the array is maxNumOfStudents. 1.e. it must only perform the addition if the size of the
array is less than maxNumOfStudents.

- If the entered student is already registered in the course (his id already exists in the array). This
check must be done by invoking the isRegistered method. If the student is already registered, it must
not add the id and print the message “Student is already registered”.

The method must be modified to:

- Return a boolean whose value is true if the addition is performed and false otherwise.

- Sort the students array again, if a new student id is added successfully, by invoking the sort method
of the Arrays class again

11. Add the mutators (setters) and accessors (getters) of the data fields name, number, instructor, and the
getter of maxNumOfStudents.

12. Add the accessor method (getter) for the students array. Note that this method must not return the
actual reference of the array students, it must return a reference to a copy of it instead.

13. Add the method prinDetails which prints the course information as follows:
Course name: ...
Course number:
Instructor name:
Number of registered students: ..,,/ max
Students IDs:

The method must print the students IDs by invoking the printStudentsIDs method.

The Main class
In your main class define the following methods:
a. A method named printCourseDetails that takes an object of type Course and prints all its details as
follows:
course_number — course_name
Instructor name:

Number of registered students:
Students IDs:

Note: try printing students IDs once by invoking the printStudentsIDs method, and once without
invoking it by iterating over the students array.

b. A method named operateCourse that takes an object of type course and continuously prints the
following menu and takes the number that represents the user choice to know what he wants to do:
What to do :

1. Print course info (Invoke the printDetails method)

2. Add student
(Invoke the addStudent method, if the addition fails print error msg “Could not add student” to the
console)

3. Remove student
(Invoke the removeStudent method, if the removing fails print error msg “Could not remove
student” to the console)

4. Select random student
Select a random student from the students array and print the randomly selected ID, by invoking
the pickRandomStudent method, as follows:

Randomly selected ID:

5. Increment maximum number of students
(Invoke the incrementMaxNumOfStudents method)

6. Exit: return to main method.

c. In your main method:
- Create a course object by invoking the no-arg constructor of the Course class.
- Invoke the method printCourseDetails to print the course details.
- Invoke the method operateCourse to continuously operate the course by taking input from the
user.

Jordan University
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

Lab-6 Tutorial
Eng. Asma Abdel Karim

¢ Tutorial contents:
o Part I: Arrays of Objects.
e Part Il: Object Composition.
e Part 11I: Using Classes from the Java Library.

< Part I: Array of Objects.
The following is the UML diagram of the Student class we implemented in the previous lab tutorial.

Student

- name: String

-id: int

- grades: double[]

- maxGrade: double

- numOfStudents: int

+ Student()

+ Student(n: String, i: int, num: int)
+ Student(n: String, i: int, g: double[])
+ getAverage(): double

+ printDetails():void

+ resetNumberOfStudents(): void
+ setName(n:String): void

+ getName(): String

+ setld(i:int): void

+ getld(): int

+ setGrades(g: double[]): void

+ getGrades(): double []

+ setMaxGrade(max:double): void
+ getMaxGrade(): double

+ getNumOfStudents(): int

The MainClass of Lab6Partl includes three methods: main, printStudentsGrades, and
getStudentWithMaxAverage. The main method invokes the printDetails method of the Student class on
the array elements. It also invokes the printStudentsGrades method by passing the students array to print
grades of its Student objects, and invokes the getStudentWithMaxAverage method by passing the students
array to get the Student object with the maximum average and print its name..

« Part I1: Object Composition.

Faculty

- name: String
- workingID: int

+ Faculty()
+ Faculty(name:String, workingID: int)
+ getName(): String

1+ setName(name: String): void
+ getWorkingID(): int
+ setWorkinglD(workinglID:int):void
Course Student
- name: String - name: String
- number: int -id: int
- students: Student[] - grades: double[]
- faculty: Faculty 5. | - maxGrade: double
h - numOfStudents: int
+ Course() + Student()
+ Course(name: String, number: int) + Student(name: String, id: int, num: int)
+ Course(name:String, number:int, faculty: Faculty, + Student(name: String, id: int, grades: double[])
students: Student[]) + getAverage(): double
+ getName(): String + printDetails():void
+ setName(name:String): void + resetNumberOfStudents(): void
+ getNumber(): int + setName(name:String): void
+ setNumber(number:int): void + getName(): String
+ getStudents(): Student[] + setld(id:int): void
+ addStudent(): void + getld(): int
+ dropStudent(): boolean + setGrades(grades: double[]): void
+ getFaculty(): Faculty + getGrades(): double []
+ setFaculty(faculty: Faculty): void + setMaxGrade(maxGrade:double): void
+ printDetails(): void + getMaxGrade(): double
+ isRegistered(id: int): boolean + getNumOfStudents(): int

The files that implement these classes are attached with this lab tutorial in Lab6Part2. Study them and note how to
implement object composition using one object and using an array of objects. Note the use of the this keyword in
the constructors and mutators of these classes. The MainClass includes methods that operate on one Course object
and arrays of Course objects.

« Part I11: Using Classes from the Java Library.

e The Character Class
For convenience, Java provides the following methods in the Character class for testing characters as:

Method Description

isDigit(ch) Returns true if the specified character is a digit.
isLetter(ch) Returns true if the specified character is a letter.
isLetter0OfDigit(ch) Returns true if the specified character is a letter or digit.
isLowerCase(ch) Returns true if the specified character is a lowercase letter.
isUpperCase(ch) Returns true if the specified character is an uppercase letter.
toLowerCase(ch) Returns the lowercase of the specified character.
toUpperCase(ch) Returns the uppercase of the specified character.

Faculty of Engineering

Object-Oriented Problem

The University of Jordan

and Technology

Department of Computer Engineering

Solving: CPE 342

Lab 6: Object Composition and Arrays of Objects

Eng. Asma Abdel Karim

¢ Lab Objectives:
» To understand the concept of object composition.

» To understand how to create and use arrays of objects.

% Given the Rentinglnfo class implementation, implement the following classes named Car and

RentalSystem with the following UML diagram:

RentalSystem

Car

- cars: Car[]

- type:
- modelYear: int

- regNumber: int

- underMaintenance: boolean
- rentingInfo: RentingInfo

- totalRentedDays: int

String

+ RentalSystem()

+ RentalSystem(cars: Car[])

+ getCars(): Car[]

+ getAvailableCars(): Car[]

+ getMostRentedCar(): Car

+ pickACar(modelYear: int): Car

+ car()

+ car(type:String, modelY ear:int, regNumber:int)
+ getType(): String

+ getModelYear(): int

+ getRegNumber(): int

+ isUnderMaintenance(): boolean

+ getTotalRentedDays(): int

+ setUnderMaintenance(underMaintenance:boolean): void
+ setRentingInfo(): void

+ resetRentingInfo():boolean

+ getRentingInfo(): rentingInfo

|

RentinglInfo

- customerName: String

- customerMobileNum: String
- numOfRentingDays: int

- maxRentingDays: int = 30

+ RentingInfo()

+ getCustomerName():String

+ getNumOfRentingDays(): int

+ getCustomerMobileNum(): String

+ getMaxRentingDays(): int

+ setMaxRentingDays(maxRentingDays:int): void

For the Car class:

The underMaintenance (=)l &x3) data field must be always initialized to false, and the
totalRentedDays data field must be always initialized to 0.

The rentinglnfo data field must be always initialized to null. This field indicates whether the car is
rented or not, if it contains null then the car is not rented. Otherwise, if it contains a reference, this
means that the car is rented, and the reference is to a Rentinglnfo object that includes info of the car
rental.

The no-arg constructor must initialize the #ype, modelYear, regNum by reading their values from the
user.

The constructor car(type:String, modelYear:int, regNumber:int) must initialize the type, modelYear,
regNum with the corresponding parameters values.

The setRentingInfo method is invoked when a car is to be rented to set the renting info of the car by
creating a new rentinglnfo object using the no-arg constructor and assign it to rentinglnfo.

The resetRentinglnfo method is invoked whenever a car is returned from rent to reset the renting info
of the car to indicate that it’s not rented and update the total renting days. It must first check that the
car is currently rented (rentinglnfo data field is not null). If so, it must add the number of renting days
of the rentinglnfo data field to the totalRentedDays of the car, then it must set the rentinglnfo data field
to null and return true. Otherwise, if the rentinglnfo is already null, the method must return false.

For the RentalSystem class:

The no-arg constructor must ask the user to enter the number of cars in the system, then create the cars
array accordingly. Then, create the car objects using the no-arg constructor of the Car class.

The constructor RentalSystem(cars: Car[]) must initialize the cars array using the passed array by
creating a new array and new object for each element.

The getCars method must return the cars array reference.

The getAvailableCars method must return an array that includes cars in the system that are available
for renting. In order for a car to be available for renting, it must be unrented and not under maintenance.
The getMostRentedCar method must return a reference to the car that has been most rented: the car
with the maximum total rented days.

The pickACar method must take a model year, then pick a car randomly with a model year that is newer
(greater) than the passed year.

In your main class:

Define a method named printCar that takes a car object and prints its details as follows:
Car type:

Car registration number: ...

Car model year: ...

Then if the car is under maintenance the method must print on a new line: Car is under maintenance.
If not, it must print: Car is not under maintenance.

Then based on the value of rentinglnfo of the car:

If the car is not rented it must print: The car is not rented.

If the car is rented it must print: The car is rented to (customer name in rentinglnfo) with mobile number
(customer mobile number in rentinlnfo) for (number of renting days in rentinglnfo).

Define a method named searchCars that takes an integer, that represents a registration number, and
an array of cars. The method searches the array for a car with the required registration number. It returns
a reference to the car object that has the entered registration number or null if the car is not found.

In your main method:

Create a RentalSystem object using the no-arg constructor of the RentalSystem class.

Continuously display the following menu to the user and take the number that represents the user choice

to know what he wants to do:

What to do :

Rent a car: this option must read a registration number from the user, and invoke the searchCars

method to search for the car with the entered registration number among the available cars (invoke

getAvailableCars()).

a. Ifno car with the entered registration number is found, the following message must be printed “No
available car with entered registration number”.

b. If a car is found, it must invoke the method setRentingInfo on the found car.

Return a car: this option must take the registration number of the car to be returned from the user and

invoke the searchCars method to search for the car with the entered registration number in all the rental

system cars (invoke getCars()).

a. Ifno car with the entered registration number is found, the following message must be printed “No
car with entered registration number”.

b. 1Ifacar is found, it must invoke the method resetRentingInfo on the car. If the method returns false,
the following message must be printed “Weird! Car is not rented!”.

Print most rented car: this option must invoke the getMostRentedCar method of the rental system.

Then print the details of the car by invoking the printCar method.

Print all available cars: this option must invoke the getdvailableCars method, and print the available

cars info in a table as follows:

Car Registration Number Car Type Car Model Year Total Rented days

Pick based on model year: this option must read the model year (above which a car is to be picked)
and invoke the pickACar method, then print the details of the returned car by invoking the printCar
method.

. Exit.

Jordan

Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

University

lizglgiilly

Lab-7 Tutorial

Eng. Asma Abdel Karim

+¢ Tutorial contents:
e Part I: Inheritance + super keyword.

e Part II: Using dialog boxes from the JOptionPane class of javax.swing.

o Part III: Polymorphism and objects casting.

< Part-I: Inheritance + super keyword.

In this lab tutorial, we will implement the inheritance hierarchy shown in the following UML diagram:

GeometricObject

- color: String
- filled: boolean

- dateCreated: java.util.Date

+ getColor(): String

+ GeometricObject()
+ GeometricObject(color:String, filled:boolean)

+ setColor(color:String): void
+ isFilled(): boolean

+ setFilled(filled:boolean): void
+ getDateCreated(): java.util.Date
+ setDateCreated(dateCreated: java.util.Date): void

+ toString(): String
T T

Circle

Rectangle

- radius: double

- width: double
- length: double

+ Circle()
+ Circle(radius: double)

+ Circle(color:String, filled:boolean, radius: double)

+ getRadius(): double

+ setRadius(radius:double): void
+ getArea(): void

+ getDiameter(): void

+ getPerimeter(): void

+ toString(): String

+ Rectangle()

filled:boolean)

+ getWidth(): double

+ setWidth(width:double): void
+ getLength(): double

+ setLength(length:double): void
+ getArea():double

+ getPerimeter():double

+ toString(): String

+ Rectangle(width: double, height: double)
+ Rectangle(width:double, length:double, color:String,

The implementation of classes in this UML diagram along with a test that includes creating objects of the
three types and printing the foString method of the created objects, are included in the folder Lab7-Part1.

«» Part II: Using dialog boxes from the JOptionPane class of javax.swing.
«» Part II-A: Displaying info in a dialog box.

In order to display text in a message dialog box, you need to use the showMessageDialog method in the
JOptionPane class. JOptionPane is defined in the javax.swing package, so you need to import it in your
code. Note that the method s/howMessageDialog is static, and hence can be invoked using the class name
(JOptionPane).

There are several ways to use the showMessageDialog method. Two of these ways are:
1) JOptionPane.showMessageDialog(null, x),
The first argument can always be null and x is a string for the text to be displayed.
Example:

x|
JOptionPane.showMessageDialog(null,

D
(1) Welcometo Javal — "Welcome to Javal!');

Liox]

2) JOptionPane.showMessageDialog(null, x, y, JOptionPane.INFORMATION MESSAGE);
As in the first way, the first argument is null, x is a string for the text to be displayed, y is a string for
the title of the message box, the fourth argument can be JOptionPane. INFORMATION MESSAGE
which causes the information icon to be displayed in the message box.
Example:

JOptionPane.showMessageDialog(null,

iijﬂjﬂﬂﬂTFmed — "Welcome to Javal",
————— | —"Display Message",
E |7 JOptionPane.INFORMATION_MESSAGE);

In Lab7-Part2, the main method is rewritten to print the foString method of the objects in message dialog
boxes.

®,

s Part II-B: Reading values from input dialog boxes.

An input dialog box prompts the user to enter an input graphically. You can obtain input from an input
dialog box by invoking the JOptionPane.showlnputDialog methods. The input is returned from the method
as a string. There are several ways for using the siZow/nputDialog method, two of these ways are:
1) String S = JOptionPane.showlInputDialog(x),

where x is a string for the prompting message.

Example:
mput x|
! String input =
m EREranmp X EJ{]pti onPane. showInputDialog(
. g "Enter an input");

Click OK to accept I:— OK i | Cancel-%, Click Cancel to close the

input and close dialog without input

the dialog

2) JOptionPane.showInputDialog(null, x, y, JOptionPane. QUESTION MESSAGE);
where x is a string for the prompting message, and y is a string for the title of the input dialog.
Example:

Input Dialog Demo x| Stringainput =
: JOptionPane.showInputDialog(null,
jiElneranmlmtd— : <"Enter an input”,
! "Input Dialog Demo",
~ 1 JOptionPane .QUESTION_MESSAGE);

OK Cancel |

The input returned from the input dialog box is a string. If you enter a numeric value such as 123, it returns
“123”. You have to convert a string into a number to obtain the input as a number.

To convert a string into an int value, use the /nfeger.parse/nt method as follows:
int intValue = Integer.parselnt(intString); //intString is a numeric string such as “123”

To convert a string into a double value, use the Double. parseDouble method as follows:

double doubleValue = Double.parseDouble(doubleString),; //doubleString is a numeric string such as
/12,37

The /nteger and Double classes are both included in the java./ang package, and thus are automatically

imported.

In Lab7-Part2, the no-arg constructor of each of the three classes is modified such that it prompts the user
to enter the value of each data field and initializes it with the entered value using an input dialog box.
Note that code written in the GeometricObject class to initialize the data fields color and filled does not
have to be re-written in the subclasses Circle and Rectangle. Constructors of the subclasses should invoke
the super-class constructor to initialize these data fields.

< Part-111: Polymorphism and objects casting.
Remember that polymorphism means that a variable of a supertype can refer to a subtype object.

Create a class that contains your main method (i.e. MainClass), then write a code that performs the
following:

1. In your main method:
a. Declare an array of three objects of type GeometricObject named myArray.

b. Create objects of the array such that:

- The first object’s actual type is GeometricObject whose color is red and is not filled.

- The second object’s actual type is Circle whose color is blue, is filled and its radius is 5.

- The third object’s actual type is Rectangle whose color is red, is not filled, with width=3 and
height=4.

c. Write a for loop that prints the details of each object in the array by invoking its toString method.
Observe the output of the print statements and justify how signature matching and dynamic
binding work in this case.

2. Define a new method named printArea with the following header:

public static void printArea(GeometricObject g)

a. Try to print the area of the passed object by invoking the getArea method (g.getArea()), and
justify the resulting syntax error.

b. Now remove the print statement you wrote in the previous step, and use the instanceof operator
to check whether the actual type of the passed object is a Circle or a Rectangle. Then, cast the
object into its actual type in order to invoke the getArea method.

The following code checks whether the passed object is a circle and invokes the get4Area method
after down-casting the passed object:

if (g instanceof Circle){
System.out.println("Circle area = "+((Circle)g).getArea()),

/

¢. In your main method, add a for loop that invokes the printArea method by passing elements of
the array you created, one element in each iteration. Observe and justify the output.

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

Lab 7
Eng. Asma Abdel Karim

«» Lab Objectives:

YV VY

¢ Implement the following classes using Java:

Department

- employees: Employee[]

+ Department ()

Define classes that extend other classes to form the inheritance relationship.

Override methods of the superclass in its subclasses.

Use the super keyword to call constructors and overloaded methods of the superclass.
Apply the concept of polymorphism and objects’ casting.

+ getEmployees(): Employee]]
+ addEmployee(): void 1<>

Employee

+ name: String
- salary: double
- dateJoined: java.util.Date

+ Employee()

+ Employee(name:String, salary:double)
+ getSalary(): double

+ setSalary(salary:double):void

+ getDateJoined(): java.util.Date

+ toString (): String

A |

Faculty

Staff

+ rank: String

+ title: String

+ Faculty()
+ Faculty(name:String, salary:double , rank: String)
+ toString (): String

+ Staff()
+ Staff(name:String, salary:double, title:String)
+ toString (): String

In the Employee, Staff, Faculty classes:

The no-arg constructors of the three classes should obtain initial values of data fields using input dialog
boxes by prompting the user with proper messages to enter required values. Note that you MUST NOT
re-read inherited data fields values in the sub-classes’ constructors; you must invoke the super-class

constructor instead.

The constructors Faculty(name:String, salary:double ,
title:String) must initialize inherited data fields by invoking the constructor Employee(name:String,

salary:double).

rank: String) and Staff(name:String, salary:double,

- The toString() method of the three classes should return a String that contains the object’s details as

follows:
For the Employee class it should return: Name is:, Salary: , Date Joined.
For the Faculty class it should return:
Nameis:, Salary: , Date Joined.
Rank:.........
For the Staff class it should print:
Name is:.........., Salary: Date Joined:
Title:

You must not re-form the String to include inherited data fields of the Faculty and Staff classes. You
must invoke the foString method of the superclass instead.

e In the Department class:
- The array employees must be initialized to be empty.

- The addEmployee method must ask the user in an input dialog box about the type of employee he wants
to add as in the following figure, then based on the user input (1 or 2) either add a faculty or staff by
creating a new object using the no-arg constructor. If the user enters a wrong input (neither 1 nor 2), it must
display the message “Failed to add employee: wrong input!” in a message dialog box and return from the
method. If the user presses Cancel, the method must return.

Input X
E' What type of employee do you want to add?
1.Faculty
2.51aff
| 0K || Cancel| |

e In your Main Class:
1. Create an object of type Department named myDepartment.
2. Continuously display the following menu to the user, and based on his input (number) invoke the
appropriate method from the Department class on myDepartment.

Input XK

5 What do you want to do?
1.Add Employee

2.Print Faculty Members
3.Print Staff

4 Exit

OK Cancel

Add Employee: invokes the addEmployee method on myDepartment.

Print Faculty Members: print details of all faculty objects in myDepartment in a message dialog
box by invoking the toString method for each object on a separate line.

The following is a sample message dialog box that will be displayed for this option:

N —

Message X

,(D Name is: Laila, Salary: 2000.0Date Joined: Fri Dec 08 12:53:27 AST 2023
Rank: Lecturer
Name is: Ahmad, Salary: 1500.0Date Joined: Fri Dec 08 12:53:29 AST 2023
Rank: Part-time Lecturer
Name is: Maha, Salary: 2000.0Date Joined: Fri Dec 08 12:53:53 AST 2023
Rank: Lecturer
Name is: Mohammad, Salary: 2800.0Date Joined: Fri Dec 08 12:54:11 AST 2023

Rank: Assistant Professor

3. Print Staff: print details of all staff objects in myDepartment in a message dialog box by invoking
the foString method for each object on a separate line. (Similar to the previous option)

4. Exit: exit the program.

If the user enters any other invalid number, the following message dialog box must be displayed, and

the program must return to the main menu and take a new input:

Message X

o
'@ Wrong Input

Jordan University
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342

Lab-8 Tutorial
Eng. Asma Abdel Karim

lizglgiilly

In this lab tutorial, we will use the classes we implemented in lab7 tutorial: GeometricObject, Circle, and
Rectangle, which are shown in the following UML class diagram.

GeometricObject
- color: String
- filled: boolean
- dateCreated: java.util.Date
+ GeometricObject()
+ GeometricObject(color:String, filled:boolean)
+ getColor(): String
+ setColor(color:String): void
+ isFilled(): boolean
+ setFilled(filled:boolean): void
+ getDateCreated(): java.util.Date
+ toString():String

AN

L‘A

Circle

Rectangle

- radius: double

- width: double
- length: double

+ Circle()

+ Circle(color:String, filled:boolean, radius: double)

+ getRadius(): double

+ setRadius(radius:double): void
+ getArea(): void

+ getDiameter(): void

+ getPerimeter(): void

+ toString(): String

+ Rectangle()

length:double)

+ getWidth(): double

+ setWidth(width:double): void
+ getLength(): double

+ setLength(length:double): void
+ getArea():double

+ getPerimeter():double

+ toString(): String

+ Rectangle(color:String, filled:boolean, width:double,

«+ Part I: Overriding the Object’s equals method.

The following shows an example of an overridden implementation of the Object’s equals method in
the GeometricObject class which checks whether two objects are equal based on their color.

@Override

public boolean equals (Object O){
if (O instanceof GeometricObject)
return color.equals(((GeometricObject)O).color),

else return false;

/

1. Add the previous implementation of the equals method to the GeometricObject class.

2. Add an implementation that overrides the equals method in the Circle class by checking whether
two circles are equal based on their radii.

3. Add an implementation that overrides the equals method in the Rectangle class by checking
whether two rectangles are equal based on their width and length. (1 point)

4. In your main method:

1. In your main method:

a.

Declare an array of three objects of type GeometricObject named myArray.

Create objects of the array such that:

c.

/7

The first object’s actual type is GeometricObject whose color is red and is not filled.

The second object’s actual type is Circle whose color is blue, is filled and its radius is 5.

The third object’s actual type is Rectangle whose color is red, is not filled, with width=3 and
height=4.

Create a new Circle object named myCircle whose color is red, is filled and its radius is 5.

Print the output of invoking the equals method by passing the Circle object you created as a
parameter (i.e. myArray/[i].equals(myCircle)).

Print the output of invoking the equals method by passing elements of the array myArray as a
parameter (i.e. myCircle.equals(myArray[i])).

Observe and justify the difference in the output in the last two steps.

«+» Part II: Protected class members.

Protected class members can be accessed only from inside the class and inside its subclasses. The following
is the UML class diagram of the GeometricObject class with its color and filled data fields defined

protected.

GeometricObject
color: String
filled: boolean
dateCreated: java.util.Date
+ GeometricObject()
+ GeometricObject(color:String, filled:boolean)
+ getColor(): String
+ setColor(color:String): void
+ getDateCreated(): java.util.Date
+ isFilled(): boolean
+ setFilled(filled:boolean): void
+ toString(): String

1. Change the visibility of the data fields color, filled, and dateCreated in the GeometricObject class to
protected.

2. Try to access these data fields from any method in the subclasses Circle and Triangle and observe the
change in its visibility.

«» Part II1: Abstract classes & Methods.

GeometricObject

color: String
filled: boolean
dateCreated: java.util.Date

+ GeometricObject()

+ GeometricObject(color:String, filled:boolean)
+ getColor(): String

+ setColor(color:String): void

+ isFilled(): boolean

+ setFilled(filled:boolean): void

+ toString(): String

+ equals(o:Object): boolean

+ getArea(): double

+ getPerimeter(): double

Circle

Rectangle

- radius: double

- width: double

- length: double

+ Circle()

+ Rectangle()

+ Circle(radius: double)

+ Circle(color:String, filled:boolean, radius: double)
+ getRadius(): double

+ setRadius(radius:double): void

+ toString(): String

+ equals(o: Object): boolean

+ getDiameter(): double

+ Rectangle(width: double, length: double)

+ Rectangle(color:String, filled:boolean, width:double,
length:double)

+ getWidth(): double

+ setWidth(width:double): void

+ getLength(): double

+ setLength(length:double): void

+ toString(): String

+ equals(o: Object): boolean

The inheritance hierarchy above is implemented in the attached files (Part-3&4).

Note that the GeometricObject class should be defined abstract since it contains abstract methods
getArea() and getPerimeter(). The getPerimeter and getArea methods must be implemented in the
subclasses Circle and Rectangle since they are concrete.

«» PartIV: The ArrayList Class.

Arrays can be used to store objects, but once the array is created, its size is fixed. Java provides the
ArrayList class, which can be used to store an unlimited number of objects. The following table
compares between using arrays and ArrayLists to store objects.

Operation Array ArrayList

Creating an arrayfArrayList String[] a = new String[10] ArrayList<Strings= 1ist = new ArrayList<>();

ceessing an element alindex] Tist.get(index);
Updating an element a[index] = "London"; Tist.set(index, "London");
Returning size a.length Tlist.size();
Adding a new element Tist.add("London");
Inserting a new element Tist.add(index, "London");
Removing an element Tist.remove(index);
Removing an element Tist.remove(Object);
Removing all elements Tist.clear(};

In your MainClass, create an ArrayList of GeometricObject objects and add a number of circles and
rectangles to the ArrayList using the no-arg constructor. Note that an array can be retrieved from the
ArrayList object using the foArray method. ~

The ArrayList class includes an [ferator object which allows removing elements from the ArrayList
while iterating over its elements. Iterator is an interface defined in the java.util package, and hence it
should be imported as follows: import java.util Iterator; In order to get the iterator of an ArrayList
object, we can use the following statement:

Iterator i = arrayListObject.iterator();

Afterwards, the following methods of the Iterator interface can be used:

1. hasNext(): returns a boolean which indicates whether the ArrayList has more elements.

2. next(): returns the next element in the ArrayList. Note that this method returns an Object, so you
should cast the returned object in the specific type of which the ArrayList is constructed.

3. remove(): removes the last element returned by this iterator.

The University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering

Object-Oriented Problem Solving: CPE 342
Lab 8
Eng. Asma Abdel Karim

¢ Lab Objectives:
» Override the equals method of the Object class.
» Use the ArrayList class to define collections of objects.
» Define protected class members.
» Apply the concept of abstract classes and methods.

s Use the classes Employee, Staff, Faculty, Department, and Main that you implemented in Lab7, and
perform the following:

Department

- employees: ArrayList<Emplpoyee>

+ Department ()

+ getEmployees(): ArrayList<Employee>
+ addEmployee(): void

+ searchEmployees(): Employee Employee

+ name: String
salary: double
dateJoined: java.util.Date

+ Employee()

+ Employee(name:String, salary:double)
+ getSalary(): double

+ setSalary(salary:double):void

+ getDateJoined(): java.util.Date

+ toString (): String

+ equals(o: Object): boolean

+ promote(): void

LF

Faculty Staff
+ rank: String + title: String
+ Faculty() + Staff()
+ Faculty(name:String, salary:double , rank: String) + Staff(name:String, salary:double, title:String)
+ toString (): String + toString (): String
+ equals(o: Object): boolean + equals(o: Object): boolean

- Modify the visibility of salary and dateJoined in the Employee class to protected.

- Override the equals method in the Employee class such that two employees are equal if they have the
same salary.

- Override the equals method in the Faculty class such that two faculty members are equal if they have
the same rank. If the passed object is an employee but not a faculty member, the equals method of the
superclass Employee must be invoked. If the passed object is neither a faculty nor an employee, it
returns false.

- Override the equals method in the Staff class such that two staff members are equal if they have the
same salary and the same title. If the passed object is not a staff, it returns false.

- Define the abstract method promote in the Employee class as shown in the UML diagram. Note the
syntax error that occurs and understand why it occurs. Then, re-define the Employee class to be abstract.
- Implement (override) the promote method in the Faculty class such that it:
1. Changes the rank of the faculty as follows:
o Ifthe current rank is “Assistant Professor”, it must be changed to “Associate Professor”.
o Ifthe current rank is “Associate Professor”, it must be changed to "Professor”.
o If the current rank is “Professor” it must print the following message in a message dialog
box: “The faculty already has the highest rank”.
2. Asks the user about the amount the salary will be incremented with (in an input dialog box) and
adds the entered amount to the faculty salary.
- Modify the Faculty() constructor such that it asks the user to enter the rank in an input dialog and takes
the choice as a number as follows:
Input X

E' Please enter faculty rank:
1.Assistant Professor

2.Associate Professor
3.Professor

| OK H Cancel‘

If the user enters any choice less than 1 or greater than 3, it must keep on displaying the same input
dialog box.
- Implement (override) the promote method in the Staff class such that it:
1. Asks the user if the title is to be changed using a confirm dialog box. If the user selects “Yes”, it
must ask him about the new title in an input dialog box. If the user selects “No” or “Cancel”, it
must not perform anything.

Select an Option X
E Is the title changed?
| Yes | | No | ‘ Cancel ‘

2. Asks the user about the amount the salary will be incremented with (in an input dialog box) and
adds the entered amount to the staff salary.

e In the Department class:
- Modify employees to be an ArrayList and initialize it to be empty.

- Modify getEmployees and addEmployee to work on an ArrayList of employees.
- The searchEmployees method must ask the user about the name of the employee he wants to find as in
the following figure, then search the employees ArrayList for the entered name. If an employee with the
entered name is found, it must return it. If it is not found it must return null.

Input X

E Enter name of employee you want to find:

| OK H Cancel‘

In your main method:

- Modify case2 (Print faculty members) and case3 (Print staff) according to the change in employees
to ArrayList.
- Modify the menu as shown in the figure below:

Input X

] What do you want to do?
= 1.Add Employee
2.Print Faculty Members
3.Print Staff
4.5earch Employees
5.Promote Employee
6.Exit

OK Cancel

o Search Employees: invokes the searchEmployees method on myDepartment. 1f the method
returns null, it must print the message “Could not find employee with the specified name!” in a
message dialog box. If not, it must print the String returned by the toString method for the
returned Employee object in a message dialog box.

o Promote Employee: invokes the searchEmployees method of the department class on
myDepartment then invoke the promote method on the returned employee. If searchEmployees
returns null, it must print the message “Sorry no employee with entered name!” in a message
dialog box.

